Răspuns: Ai demonstrația mai jos
Explicație pas cu pas:
[tex]\bf a = 2^7\cdot3^8+2^9\cdot3^7+2^7\cdot3^8[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(2^{7-7}\cdot3^{8-7}+2^{9-7}\cdot3^{7-7}+2^{7-7}\cdot3^{8-7}\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(2^{0}\cdot3^{1}+2^{2}\cdot3^{0}+2^{0}\cdot3^{1}\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(1\cdot3+4\cdot1+1\cdot3\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot\Big(3+4+3\Big)[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot 10[/tex]
[tex]\bf a = 2^7\cdot3^7\cdot 2\cdot 5[/tex]
[tex]\bf a = 2^{7+1}\cdot3^7\cdot 5[/tex]
[tex]\red{\boxed{~\bf a = 2^{8}\cdot3^7\cdot 5\implies ~a~~\vdots~~5~ }}[/tex]
[tex]==pav38==[/tex]