Răspuns:
Explicație pas cu pas:
[tex]\dfrac{d}{dx}\Big[x(x\ -\ 2)^2\Big] =\\\\=x*\dfrac{d}{dx}\Big(x\ -\ 2\Big)^2 + \Big(x\ -\ 2\Big)^2*\dfrac{d}{dx}\Big(x\Big) =\\\\= x*\Big[2*\Big(x\ -\ 2\Big)\Big] + \Big(x\ -\ 2\Big)^2*1 = \\\\= 2x*\Big(x\ -\ 2\Big) + \Big(x\ -\ 2\Big)^2 = \\\\=\Big(x\ -\ 2\Big)*\Big[2x + \Big(x\ -\ 2\Big)\Big] = \\\\=\Big(x\ -\ 2\Big)*\Big(3x\ -\ 2\Big) =\\\\= 3x^2 - 2x - 6x + 4 =\\\\= 3x^2 - 8x + 4[/tex]