Aplicând aceeași regula,rezolvi și celelalte subpuncte. (ex 1)
[tex] {2}^{2} \times {2}^{10} \times {2}^{11} = {2}^{2 + 10 + 11} = {2}^{23} [/tex]
exact la fel rezolvi în continuare (ex 2)
[tex] {2}^{25} \div {2}^{7} = {2}^{25 - 7} = {2}^{18} [/tex]
ex 3.
[tex] {2}^{25} \div 8 < = > {2}^{25} \div {2}^{3} = {2}^{25 - 3} = {2}^{22} [/tex]
[tex] {3}^{40} \div 9 = {3}^{40} \div {3}^{2} = {3}^{40 - 2} = {3}^{38} [/tex]
[tex] {3}^{62} \div 81 = {3}^{62} \div {3 }^{4} = {3}^{62 - 4} = {3}^{58} [/tex]
[tex] {2}^{29} \div 64 = {2}^{29} \div {2}^{6} = {2}^{29 - 6} = {2}^{23} [/tex]
ex 4
[tex] ({11}^{8})^{5} = ( {11})^{8 \times 5} = (11)^{40} [/tex]
ex 5. [(5^6)^5]^3=5^6×5×3=5^90