Răspuns: [tex]\red{\boxed{\bf~8~}}[/tex]
Explicație pas cu pas:
[tex]\bf \Bigg[\bigg( 1\dfrac{1}{3} \bigg)^{-1}-2^{-2}\Bigg]^{-3}=[/tex]
[tex]\bf \Bigg[\bigg( \dfrac{1\cdot3+1}{3} \bigg)^{-1}-\dfrac{1}{2^{2}}\Bigg]^{-3}=[/tex]
[tex]\bf \Bigg[\bigg( \dfrac{4}{3} \bigg)^{-1}-\dfrac{1}{4}\Bigg]^{-3}=\bigg( \dfrac{3}{4}-\dfrac{1}{4}\bigg)^{-3}=[/tex]
[tex]\bf \bigg( \dfrac{~2^{(2} ~}{4}\bigg)^{-3}=\bigg( \dfrac{1}{2}\bigg)^{-3}=[/tex]
[tex]\bf 2^{3} =\red{\boxed{\bf~8~}}[/tex]