Răspuns:
Explicație pas cu pas:
a) √(x²-3x+4) < -2
din conditia radicalului => x ≥ 0 si √(x²-3x+4) ≥ 0 , deci
inecuatia nu are solutii reale.
b) √3x ≥ 2 , conditie : x ≥ 0
√3x ≥ 2 I² => 3x ≥ 4 => x ≥ 4/3
c) 2x-1 - √(2x-1) ≤ 6 ; conditie : 2x-1 ≥ 0 => x ≥ 1/2
2x-1 - √(2x-1) ≤ 6 <=> 2x-1-6 ≤ √(2x-1) <=>
2x-7 ≤ √(2x-1) I² => 4x²-28x+49 ≤ 2x-1 <=>
4x²-30x +50 ≤ 0 I: 2 =>
2x² - 15x + 25 ≤ 0 ;
2x² - 15x + 25 = 0 =>
a = 2 ; b = -15 ; c = 25; Δ = b²-4ac = 225-200 = 25 => √Δ = 5
x₁,₂ = (-b±√Δ)/2a = (15±5)/4
x₁ = (15-5)/4 = 10/4 = 5/2
x₂ = (15+5)/4 = 20/4 = 5
x I -∞ 4/3 5/2 5 +∞
2x²-15x+25 I++++++++++++++++0----------0++++++++++++
=> x ∈ [5/2 ; 5]